
www.manaraa.com1 0 8 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

necessary to build software is often de-
scribed abstractly, given as obvious, or ig-
nored altogether. But software development
is a fundamentally technical problem for
which management solutions can be only
partially effective.

In this article, we describe a basic set of
technologies that real software developers
apply before, during, and after designing real
software, often against unrealistic schedule
and budgetary constraints. We hope this dis-
cussion encourages dialog and debate be-
tween the people who write software and the
people who write about software.

Looking for answers in the
software engineering literature

Imagine that you know nothing about
software development. So, to learn about it,
you pick up a book with “Software Engineer-
ing,” or something similar, in the title. Cer-

tainly, you might expect that software engi-
neering texts would be about engineering
software. Can you imagine drawing the con-
clusion that writing code is simple—that code
is just a translation of a design into a language
that the computer can understand? Well, this
conclusion might not seem so far-fetched
when it has support from an authority:

The only design decisions made at the
coding level address the small implemen-
tation details that enable the procedural
design to be coded.1

Really? How many times does the design
of a nontrivial system translate into a pro-
gramming language without some trouble?
The reason we call them designs in the first
place is that they are not programs. The na-
ture of designs is that they abstract many
details that must eventually be coded. Many
notorious software bugs are the result of

focus
Software Engineering Is
Not Enough

James A. Whittaker, Florida Institute of Technology

Steven Atkin, IBM

How can we create
better software?
The challenge is
to broaden the
software
engineering
discourse from
just management
techniques to
include the real
technology that
software
development
requires.

M
uch software engineering literature begins with the admonition
that practitioners aren’t doing enough—that the state of the
practice is creating bad software. We do not dispute this fact.
However, we believe that what software engineering literature

offers as solutions are also not enough. Books on the subject favor the
“light” side of the discipline: project management, software process im-
provement, schedule and cost estimation, and so forth. The real technology

out of the box

www.manaraa.com

overlooked or ill-understood details.2 If
details really were unimportant, designs
would be compilable and little program-
ming by humans would be necessary.

However, automatic code generation
from designs is possible only in limited ap-
plication domains (for example, databases);
for most problem domains, human pro-
grammers are the norm. Programming re-
mains monstrously complicated for the vast
majority of applications. It is so complicated
that developers can work for years in a sin-
gle language and still not learn all its nu-
ances. Often, developers don’t have time to
master a language because they must learn a
new language every time technology and
platforms change. Such change ensures that
mastery of language and platform details is
not a given and, therefore, that a good de-
sign does not ensure a good program.

The problem with current software engi-
neering texts that focus only on design is
that they encourage software developers to
gravitate to the latest design fads, assuring
us that good code will follow. This drives
developers further away from their work’s
technical foundations. We lament the pref-
erence for the latest fashionable design tech-
nologies and the seeming aversion to the
fundamental technical skills such as systems
programming and debugging that form the
core of software development. How can you
expect practitioners to take these funda-
mentals seriously when they fail to get more
than cursory treatment in the literature?

Can you also imagine concluding that the
only good program is a simple program?

Simplicity, clarity and elegance are the
hallmarks of good programs; obscurity,
cleverness, and complexity are indications
of inadequate design and misdirected
thinking.3

In our experience, the only programs that
are simple and clear are the ones you write
yourself. When you have written a program
in its entirety, you have forced yourself to
understand every aspect of the problem and
the solution. At that point, the program will
seem simple and easy to read. But unless the
problem being solved is so simple and well
understood that it cannot be obfuscated,
programs are complex! Have you ever seen
a simple compiler, a simple operating sys-
tem, or a simple 64-bit encryption algo-

rithm? Just because code is complex does
not mean it is wrong. Complex problems of-
ten demand complex solutions.

Instead of having an allergic reaction to
complexity, true software engineers react
with suspicion. Perhaps we can apply sim-
plification or refactoring techniques, but
then, some software is simply complicated
because the problem it automates is compli-
cated. We might be frustrated, but we must
also be realistic. (For more on simplicity—
or the lack of it—in software, see the side-
bar “Simple Code Is Not So Simple.”)

You might then decide to consult some
older references to look for more timeless
wisdom:

Many programs don’t need flow charts at
all; few programs need more than a one
page flow chart.4

Imagine concluding that documentation
can be excessive or even unnecessary! We
repeat: real programs are complex by na-
ture. (For an example of complexity, see the
sidebar “Programming Is Easy, Isn’t It?”)
There is rarely such a thing as too much
documentation. When you must maintain
code you did not write, the documentation
is often your only chance to successfully
change the code. Imagine having to modify

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 1 0 9

Here is a “simple” function prototype:

WINBASEAPI BOOL WINAPI GetCommState(HANDLE hFile, LPDCB lpDCB);

There is little reason here to do much verification, right? Wrong. Simple
programs are often deceiving. Look into this function a little more carefully,
and you can begin to appreciate the complexity of many programs that de-
velopers must deal with every day.

This function prototype appears to have only two arguments. At first this
seems like a well-defined function with simple types that just checks the com-
munication state and returns a Boolean value. However, on close examina-
tion the LPDCB type is not a simple type at all. Look at Figure A in the side-
bar, “The Making of a Maintenance Nightmare” (see p. 114). That code
involves at least 29 arguments. You might question why we say “at least.”
The answer is that we cannot be sure how many arguments a function actu-
ally uses. Simply counting the number of fields in LPDCB and adding one for
the HANDLE type only sets the minimum. The LPDCB type might also contain
pointer fields, thereby increasing the count even further. In addition, HANDLE
is often used as a pointer, so we would need to consider its fields as well.

This function can be highly destructive. All the fields of LPDCB are acces-
sible to it whether or not it requires them. The function is free to change any
fields. The moral:

You can’t judge a function by its prototype or its listed parameters; a careful
examination is always required.

Simple Code Is Not So Simple

www.manaraa.com

an encryption-key management program
without documentation! Designs do not and
cannot cover all the details. The only hope
for understanding programs is good docu-
mentation of control structure blocks and
detailed descriptions of the purpose and use
of data structures. Moreover, effective doc-
umentation often must go beyond this detail
and include design rationale and, even more
important for maintainability, the reasons
against alternative designs. Documenta-
tion—often exceeding the source code in
size—is a requirement, not an option.

Finally, you decide that you simply read
the wrong section of the software engineer-
ing book, so you try to find the sections that
cover coding. A glance at the table of con-
tents, however, shows few other places to
look. For example, Software Engineering: A
Practitioner’s Approach, McGraw-Hill’s
best-selling software engineering text, does
not have a single program listing.1 Neither
does it have a design that is translated into
a program. Instead, the book is replete with
project management, cost estimation, and
design concepts. Software Engineering:
Theory and Practice, Prentice Hall’s best-
seller, does dedicate 22 pages to coding.5

However, this is only slightly more than
four percent of the book’s 543 pages.

You could conclude that the act of coding
is a very small part of software engineering.
Search all you want; you will not find the
answers to your coding problems in the
pages of most software engineering books.

Software development gets so little atten-
tion in the software engineering literature
because it is the hardest and least under-
stood part of the software engineering life
cycle. Coding is immensely difficult without
a good design but still very difficult with
one. Maintaining code is next to impossible
without good documentation and formida-

ble with it. So, we now look at the technical
things designers can do to ease development
and maintenance.

Considerations before design
Practitioners understand the importance

of software engineering methodologies.
They also recognize there is no magic
method that guarantees a well-engineered
product. This is especially true before design
begins when little methodology is available
to help.

Before design, developers must pursue
two activities: familiarizing themselves with
the problems they are to solve (we’ll call this
problem-domain expertise) and studying
the tools they will use to solve them (we’ll
call this solution-domain expertise). Exper-
tise in both domains is crucial for project
success.

Understanding the problem domain is
difficult. Imagine writing a matrix-algebra
library without expertise in mathematics,
coding an address resolution protocol cache
without detailed knowledge of routing pro-
tocols, or building a flight simulator with-
out understanding how to fly an airplane.

Learning the problem domain means
more than simply talking to users and gath-
ering requirements. Problem-domain ex-
pertise is intensely technical and requires
significant study of software environments,
low-level protocols, and domain conven-
tions. Software engineering methodologies
do not and cannot teach this art. Learning it
takes hard work, much study and experi-
mentation, and usually years of experience.
Seeding your team with problem-domain
experts is one of the best things you can do
to increase your chances of success.

The solution domain is more focused and
essentially consists of the tools that a team
of developers and testers employ to build
the software product. The minimum set of
tools is one or more editors, compilers,
linkers, and debuggers (symbolic and ker-
nel)—the fewer, the better. To that set, add
make-utilities, runtime libraries, develop-
ment environments, version-control man-
agers, and, of course, the operating system.
So, developers must master many complex
tools before they can even use a software
engineering methodology.

Software engineering doesn’t help with
this domain, either. Developers must be

1 1 0 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

The Windows 2000 kernel contains over 1,200 calls.
The Win32 application programming interface contains over 20,000

calls. The printed reference manual for just the calls and their parameters is
over four inches thick.

A typical C runtime library has over 10,000 functions. C itself has hun-
dreds of built-in functions, operators, and reserved words.

Applications routinely use dozens of other libraries of similar complexity.
Each of these libraries likely has thousands of bugs.

Your mission, should you choose to accept it, is to go out and write a de-
cent program.

We wish you well.

Programming Is Easy, Isn’t It?

www.manaraa.com

masters of their programming language and
their OS; methodology alone is useless. It is
easy to misuse a programming language by
selecting the wrong data structure or by us-
ing an unsafe built-in function. It is likewise
easy to overlook OS features that partici-
pating developers do not understand well.
Understanding when to refresh a window,
how to handle certain error codes, or when
to launch independent execution threads
has nothing to do with design and every-
thing to do with detailed knowledge of the
solution domain. Developers who are inex-
perienced in a language or an operating en-
vironment have little hope of engineering
good code regardless of their methodology
and management practices.

Selecting and properly using tools is an-
other issue that gets light treatment in the
software engineering literature. Everyone
should use the same editor, compiler, and
linker (with the same settings and environ-
ment variables) so that code can be properly
integrated and maintained. “Integration
purgatory” is the cost of not doing so. If
each module checked into a build is com-
piled with a different compiler using any
settings and flags the developer desires, it
might not integrate smoothly. Costly re-
work and retesting then follows. Even
worse is the maintenance problem where
one-line changes can take hours to recom-
pile because the original settings for the pre-
vious compile are lost or forgotten. The
tools that once were employed to solve a
problem now become the problem.

Many software engineering books high-
light a different type of tool that most prac-
titioners shy away from: CASE tools.
Unfortunately, because these tools are soft-
ware, they can produce buggy output. Writ-
ing your own bugs is bad enough; inheriting
bugs from your tools is the epitome of frus-
tration. Rework and work-arounds are
costly.

Simply put, predesign activity defies
methodology. However, the technical work
performed in understanding the problem
and solution domains can be the difference
between project success and failure.

Considerations during design and
coding

New problems surface once design and
coding begins. The first hard lesson that de-

velopers learn is to not trust their environ-
ment. Software’s environment consists of
users that provide input and process output.
For example, humans are users who provide
keystrokes and mouse clicks and process
screen output; the OS and external code li-
braries are users that provide system re-
sources via function calls, and so forth. De-
velopers who trust that humans will always
enter the input they expect and that OSs never
run out of resources will write code that
works only when everything goes as planned.
This results in software that works well for
only the most careful and deliberate users in
the most perfect system configuration. The
rest of us are stuck with buggy behavior
whenever we stray from the well-beaten path
the original developers established.

Validation
Good developers understand that they

cannot trust user inputs. Each time an input
enters the system it must be validated to
prevent failure or corruption of internal
data (which will eventually lead to failure).
This means each time data passes from an
interface control to the main functional
code, it must be checked for validity before
it is stored or used in computation. Each
time a field is read from a file, we must en-
sure it is the appropriate type and that the
value is within an acceptable range. Any-
time we fail to perform such validation, we
risk program failure.

Deciding which inputs to trust and which
to validate is a constant trade-off. Input val-
idation costs valuable CPU cycles and can
slow down an application. Experienced de-
velopers have a good feel for which system
calls rarely fail and which interface controls
provide reliable data; they write their pro-
grams to balance speed versus risk.

Even if all input is valid, internal data can
still get corrupted. Consider, for example,
the addition of two short (two byte) signed
integers a and b. Validating a and b is nec-
essary to avoid overflow; however, we must
also constrain their combination. Suppose a
user enters the values 32,000 and 1,000 for
a and b, respectively. If we sum the two and
try to store the result in another short
signed integer, the result overflows because
33,000 is larger than the maximum signed
two-byte integer value 32,767—valid data,
invalid result.

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 1 1 1

Selecting and
properly using
tools is another
issue that gets
light treatment
in the software

engineering
literature.

www.manaraa.com

Handling failure
Developers quickly learn that every pro-

gram has two parts: the code that performs
the desired function and the code that han-
dles failure. We do well at coding the main
functional code; handling failure is the thing
we do poorly.

How do we handle failure? A good place
to begin answering this question is to ask
where a program can fail. Certainly any in-
teraction with our environment could be
risky; humans are unpredictable, system re-
sources can fluctuate, and files can be cor-
rupt. We need to program constraints into
our code that ensure every input is expected
and our users can process every output.

This isn’t enough, as we said; software
can also fail internally. Inside a program are
essentially two things: data and computa-
tion. Both can fail and therefore require
constraints, just as inputs and outputs do.

Constraints on input and output are pro-
grammed in a number of ways. For graphi-
cal user-interfaces, interface controls carry
much of the workload by filtering out in-
correctly typed data and data that is out of
the acceptable range. However, if you are
coding a solution with a programmatic in-
terface, all the error checking is your re-

sponsibility. You must painstakingly vali-
date each parameter of each call, often
meaning a lot of If statements and calls to
validation routines. Check the sidebar
“Plenty of Opportunities to Fail” for an-
other view of the validation problem.

Constraints on data and computation
usually take the form of wrappers—access
routines (or methods) that prevent bad data
from being stored or used and ensure that
all programs modify data through a single,
common interface.

Unfortunately, most modern program-
ming languages provide little support for
programming constraints beyond If state-
ments and access routines. So, most devel-
opers rely on exception handlers. Raising
exceptions is not the same thing as program-
ming constraints. Constraints actually pre-
vent failure. Exceptions, on the other hand,
let the failure occur and then trap it. The
trapped failure can then be handled by a
special routine that the developer provides.

When developers use exceptions (which
most do because they have little choice in
the matter), they must determine how to
fail. Failure recovery is often difficult. The
program must know the application’s state
at the time of the failure so that it can prop-
erly react. If files are open, the program
needs to be aware of this so that it doesn’t
try to reopen a file. If an operation didn’t
complete when the failure occurred, the
program needs to figure out how much of
the operation succeeded and how much is
left to do. The exception handler must take
stock of the application and recover appro-
priately. Otherwise, it might fail too: it
might write to a file that doesn’t exist, use
data that didn’t get initialized, and so forth.
If the exception handler is sloppy, what will
handle the exception when the exception
handler crashes?

In a nutshell
Design and coding present extreme tech-

nical challenges that defy methodology and
stretch the capabilities of modern program-
ming languages. In addition to designing the
main functional code, developers must write
constraint code and consider how their pro-
gram can fail gracefully. Failures will occur;
how developers design and code against
them is not, unfortunately, part of main-
stream software engineering.

1 1 2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Often we think of program inputs only in terms of our interaction with an
application through its GUI. However, system inputs are much more perva-
sive and provide a much larger input validation problem.1

For example, Microsoft PowerPoint, a large, complex application for
making presentations and slide shows, makes nearly 800 calls to 30 differ-
ent functions of the Windows kernel upon invocation. This means a single
input from a human user (invoking the application) causes a flurry of under-
cover communication to and from the operating system kernel.

Certainly, invocation is a special input and requires a great deal of setup
and data initialization. But other operations also are demanding on low-
level resources. For example, when PowerPoint opens a file, 13 kernel func-
tions are called nearly 600 times; when it changes a font, two kernel func-
tions are called a total of 10 times.

These calls are only to the OS kernel. PowerPoint also uses many other
external resources (dynamic-linked libraries) in the same manner as the ker-
nel, including mso9.dll, gdi32.dll, user32.dll, advapi32.dll, comctl32.dll,
and ole32.dll. Clearly, the amount of communication between an applica-
tion and the operating environment dwarfs GUI input.

Unless all these calls are validated, a single bad return code can bring the
application to its knees. Perhaps the next time you use desktop software, you
might consider the complexity of the operations the product is performing.

Reference
1. J.A. Whittaker, “Software’s Invisible Users,” IEEE Software, vol. 18, no. 3, May/June 2001,

pp. 84–88.

Plenty of Opportunities to Fail

www.manaraa.com

Considerations after design and
coding

At this point, the software is built, de-
bugged, and executed. Modifying an exist-
ing system is different from “clean sheet”
development. The code is already written
and chances are it is buggy. Furthermore,
unless you are the original developer, it is
also hard to read and understand. This situ-
ation is where developers are handed prob-
lem reports and asked to diagnose possible
bugs and fix them.

The tools for this task are source debug-
gers and other low-level system tools. All
good developers depend heavily on them.
Indeed, getting along without them is im-
possible, for many reasons.

The most important reason occurs in fail-
ure reproduction—the “repro problem.”
Failure reproduction is not the no-brainer it
seems. Often in this situation, a tester (or
user) finds a problem and reports it, but
when the developer gets the report, he or
she can’t reproduce the problem in his or
her environment. Why? Well, many things
happen under the hood of software that
aren’t visible to humans who are watching
the software through a GUI. For each input
a human user enters, dozens of system calls
and calls to reused components occur. Nor-
mally, users report only their own input;
that is, “it broke when I did such-and-
such.” Developers need their system tools to
tell them exactly what was happening when
those inputs were applied. Which system
calls got executed? Which ones failed? What
were the return codes? Without this infor-
mation, the hope of diagnosing irrepro-
ducible problems is slim. Developers must
learn to effectively use their system tools, or
they are operating with blinders on—seeing
only the GUI and not the system interfaces.

However, system tools don’t help much
when adding new functionality to code.
Adding new behavior to existing code is dif-
ficult. When experienced developers mentor
novices, they share two pieces of advice:

� Don’t trust comments.
� Be wary of side effects when you modify

code.

The first piece of advice might seem a
contradiction; we debunked the idea earlier
that all code was simple enough to do with-

out comments. Comments are indeed impor-
tant, and some complex programs are not
maintainable without them. However, the
advice still stands: you can’t explicitly trust
comments. Developers should use them to
understand the code, but not as a surrogate
for the code. Frequently, comments are not
updated as the software is modified. It is too
easy for developers to update code and not
bother updating the comments. The result is
comments describing code that no longer ex-
ists. So trust the comments only as an aid to
understanding the code; but never forget
that only the code has to be up-to-date; the
comments do not.

Regarding side effects, if a change re-
quires modification of data, we must ensure
that all programs that rely on that data can
still function properly after it changes. The
worst maintenance sin is to break something
that used to work. (For another example of
a negative side effect, see the sidebar “The
Making of a Maintenance Nightmare.”)

Checking that a fix was successful and
that no other dependent functionality was
broken is a formidable technical task—one
that modern software engineering addresses
incompletely.

Constant considerations
If there were one thing that all developers

would learn and never forget, we would
want it to be this: eventually someone else
will have to modify your code. Learning this
would motivate them to

� Minimize the need for other program-
mers to modify their code

� Make their programs as maintainable as
possible

The former motivation would mean that
programmers would endeavor to write code
that is easy to use and hard to break. The
latter motivation would ensure that the
code is readable, that data is named appro-
priately, and that the code has informative,
up-to-date comments.6 If only developers
never forgot about maintenance, we would
all be better off.

W e are not implying that what
software engineering literature
preaches is either incorrect or

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 1 1 3

Regarding
side effects,
if a change
requires

modification of
data, we must
ensure that all
programs that

rely on that
data can still

function
properly after

it changes.

www.manaraa.com

unimportant. We are convinced that these
authors’ intentions are good; they are con-
cerned about software quality and are try-
ing to help. Indeed, they have helped: sound
management practices are beneficial to
any software development project. How-
ever, we are concerned over the lack of
substantive treatment of the technical as-
pects of software development. Ultimately,
all software development projects concern
designing, writing, and maintaining a code
base. The techniques for doing these
things correctly are at the heart of the dis-

cipline we call “software engineering.”
Attention to the technical details often

defines a successful product. Solid technical
processes are responsible for quality, and
good technical people can create good
products despite poor management. How-
ever, the reverse is not necessarily true—
below-average developers are extremely un-
likely to create a good product even under
the best management and methodology. As
we mentioned before, developers must mas-
ter their programming language (and its
compiler, debugger, and integrated develop-

1 1 4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

In the frenzy of fixing bugs, maintenance developers often
forget the design principles that they routinely apply when they
create code from scratch. The code in Figure A, published on a
popular Web repository, is one such example, we believe.

This code is an example of the all-inclusive type. This type
most likely came about incrementally. Originally, maybe only
four fields were needed. As time went on, developers needed this
type along with some other data to create a new function or fix a

bug. So, rather than introduce a new type, they just appended
their fields onto the existing type, opening the door to possible
side effects (because there is more shared data to be misused)
and security issues (because the entire structure is exposed to
users whether they need the data or not). It is highly unlikely that
all the fields are related and are always required by functions us-
ing this type. However, the pressure to quickly fix a bug often
corners maintenance developers into such “quick” fixes.

The Making of a Maintenance Nightmare

Figure A. Published source code for a DCB data type.

typedef struct _DCB {

DWORD DCBlength; /* sizeof(DCB) */

DWORD BaudRate; /* Baudrate at which running */

DWORD fBinary: 1; /* Binary Mode (skip EOF check) */

DWORD fParity: 1; /* Enable parity checking */

DWORD fOutxCtsFlow:1; /* CTS handshaking on output */

DWORD fOutxDsrFlow:1; /* DSR handshaking on output */

DWORD fDtrControl:2; /* DTR Flow control */

DWORD fDsrSensitivity:1; /* DSR Sensitivity */

DWORD fTXContinueOnXoff: 1; /* Continue TX when Xoff sent */

DWORD fOutX: 1; /* Enable output X-ON/X-OFF */

DWORD fInX: 1; /* Enable input X-ON/X-OFF */

DWORD fErrorChar: 1; /* Enable Err Replacement */

DWORD fNull: 1; /* Enable Null stripping */

DWORD fRtsControl:2; /* Rts Flow control */

DWORD fAbortOnError:1; /* Abort all reads and writes on Error */

DWORD fDummy2:17; /* Reserved */

WORD wReserved; /* Not currently used */

WORD XonLim; /* Transmit X-ON threshold */

WORD XoffLim; /* Transmit X-OFF threshold */

BYTE ByteSize; /* Number of bits/byte, 4-8 */

BYTE Parity; /* 0-4=None,Odd,Even,Mark,Space */

BYTE StopBits; /* 0,1,2 = 1, 1.5, 2 */

char XonChar; /* Tx and Rx X-ON character */

char XoffChar; /* Tx and Rx X-OFF character */

char ErrorChar; /* Error replacement char */

char EofChar; /* End of Input character */

char EvtChar; /* Received Event character */

WORD wReserved1; /* Fill for now. */

} DCB, *LPDCB;

www.manaraa.com

ment environment), master their operating
environment (the OS, runtime libraries, and
APIs), and be willing to become problem-
domain experts to have even a chance at be-
ing effective. Then and only then can they
use software engineering effectively.

It is time to call a truce. Software devel-
opers do not deserve to be beaten up each
time a new book or article on software en-
gineering gets published. They face enor-
mous technical challenges, whose solutions
are poorly addressed in the software engi-
neering literature, yet they manage to create
some of the most complex systems known
to man. Software engineering advocates
face the equally enormous challenge of help-
ing them to do this better. It’s about time we
all started working together.

Acknowledgments
We thank Nikhil Nilakantan of Texas Instruments

for his review and helpful comments. In addition, the
anonymous reviewers helped improve this article by
giving insightful comments.

References
1. R. Pressman, Software Engineering: A Practitioner’s

Approach, McGraw-Hill, New York, 1997, p. 346.
2. R. Glass, Software Runaways, Prentice Hall, Upper

Saddle River, N.J., 1998.
3. R. Fairley, Software Engineering Concepts, McGraw-

Hill, New York, 1985, p. 192.
4. F. Brooks, The Mythical Man-Month: Essays on Software

Engineering, Addison-Wesley, Boston, 1982, p. 167.
5. S. Pfleeger, Software Engineering: Theory and Practice,

Prentice Hall, Upper Saddle River, N.J., 1998.
6. S. McConnell, Code Complete: A Practical Handbook

of Software Construction, Microsoft Press, Redmond,
Wash., 1995.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 1 1 5

About the Authors

James A. Whittaker is a professor of computer science at the Florida Institute of Tech-
nology, Melbourne, where he leads a team of computer security and software-testing re-
searchers. His current interests are in secure operating systems, digital rights management, re-
verse engineering, and anti-cyber warfare. He received his PhD in computer science from the
University of Tennessee. Contact him at the Florida Inst. of Technology, 150 W. University
Blvd., Melbourne, FL 32901-6975; jw@cs.fit.edu.

Steven Atkin is a software engineer at IBM in Austin, Texas. He is also a member of the
IBM Globalization Center of Competency. He was the development lead for Universal Lan-
guage Support and the Graphical Locale Builder for OS/2. His research interests include char-
acter coding systems, bidirectional text processing, and software globalization. He received his
PhD in computer science from the Florida Institute of Technology. Contact him at the Florida
Inst. of Technology, 150 W. University Blvd., Melbourne, FL 32901-6975; atkin@us.ibm.com.

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

revolutionary new quarterly journal that seeks out and
delivers the very best peer-reviewed research results on
mobility of users, systems, data, computing information

organization and access, services, management, and applications.
IEEE Transactions on Mobile Computing gives you remarkable
breadth and depth of coverage...

A

The latest peer-reviewed research
keeps you on the cutting edge...

To subscribe:

http://
computer.org/tmc

or call

USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

NEW
for

2002

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

